
ECE 604, Lecture 5

September 04, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Green’s Function Derivation from Coulomb’s Law

• Green’s Function Derivation from Partial Differential Equation

• Uniqueness Theorem

Additional Reading:

• Section 1.17, Ramo et al, Section 5.2, Kong

Printed on September 12, 2018 at 15 : 58: W.C. Chew and D. Jiao.
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2 Green’s Function—From Coulomb’s Law

A Green’s function is a point source response to a partial differential equation
(PDE). We can take the Poisson’s equation as an illustration,

∇2Φ(r) = −%((r)

ε
(2.1)

To find the Green’s function, we let the right-hand side be a point source, and
seek the solution of

∇2g(r, r′) = −δ(r− r′) (2.2)

Equations (2.1) and (2.2) are very similar except for the right-hand side. The
solution to (2.2) is the solution due to a point source, and hence, is called the
Green’s function g(r, r′). We know the solution to (2.1) when the right-hand
side is a point charge located at r = r′, namely,

%(r) = qδ(r− r′) (2.3)

We know what Φ(r) is like for a point source: in this case from Coulomb’s law,
that is

Φ(r) =
q

4πε|r− r′|
(2.4)

By comparing (2.1) (2.2) (2.3) and (2.4), we conclude that the Green’s function
is

g(r, r′) =
1

4π|r− r′|
= g(r− r′) (2.5)

Since g(r, r′) only depends on |r− r′|, we can rewrite it as g(r− r′). Eq. ( 2.5)
is known as the Green’s function of the partial differential equation given by
(2.1). Mathematicians also call the Green’s function the fundamental solution,
as it is of fundamental importance to the partial differential equation.
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We can write a source %(r) as a linear superposition of point sources math-
ematically as

%(r) =

ˆ
V

dV ′%(r)δ(r− r′) (2.6)

The right-hand side is a linear superposition of point sources. Can we also write
Φ(r) then as linear superposition of point-source response? Or

Φ(r) =

ˆ
V

dV ′ %(r)

4πε|r− r′|
(2.7)

In other words,

Φ(r) =
1

ε

ˆ
V

dV ′%(r)g(r− r′) (2.8)

To confirm that (2.8) is a solution if (2.1), we can back substitute it into the
left-hand side of (2.1), and exchange the order of differentiation and integration.
That is

∇2Φ(r) =
1

ε

ˆ
V

dV ′%(r)∇2g(r− r′) (2.9)

Using (2.2) for the definition of g(r− r′), we in fact see that the right-hand
side of (2.9) is in fact the right-hand side of (2.1), confirming that (2.8) is the
solution of (2.1) for a general source %(r). Notice that (2.9) is a convolutional in-
tegral. In other words, the general solution to the Poisson’s equation as given by
(2.8) is obtained by convolving a general source with the point-source response
g(r− r′), or the Green’s function.
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3 Green’s Function from Partial Differential Equa-
tion

Instead of relying on Coulomb’s law to determine the Green’s function, it can
be also derived mathematically from the relevant partial differential equation.
To this end, we put the point source at the orgin such that (2.2) becomes

∇2g(r) = −δ(r) (3.1)

where we have let r′ = 0, calling g(r) the solution to (3.1). Due to symmetry,
g(r) has to be spherically symmetric; hence g(r) = g(r). In this case, the
Laplacian operator ∇2 only depends on r but not on θ and φ in spherical
coordinates. From lookup table, it is

∇2 = ∇ · ∇ =
1

r2

∂

∂r
r2 ∂

∂r
(3.2)

Away from r 6= 0, ∇2g(r) = 0, and possible solution for g(r) is

g(r) =
C

r
+D (3.3)

However, we are seeking solutions such that g(r) → 0, as r → ∞; therefore
D = 0, and

g(r) =
C

r
(3.4)

But

∇ · ∇C
r

= −δ(x)δ(y)δ(z) (3.5)

Integrating the above about a small sphere of radius a around the origin,
one gets, after invoking Gauss’s divergence theorem that

ˆ
∆S

dSn̂ · ∇C
r

= −1 (3.6)

where ∆S is the surface of a small sphere if radius a, moreover, n̂ ·∇C
r = ∂

∂r
C
r =

− C
r2 . For a small sphere of radius a, the left-hand side of the above evaluates

to a simple function, and the above equation becomes

−4πa2(
C

a2
) = −1 (3.7)

or that

C =
1

4π
(3.8)
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Hence,

g(r) =
1

4πr
(3.9)

In general,

g(r− r′) =
1

4π|r− r′|
(3.10)

only depends on r− r′|.

4 Uniqueness Theorem

This theorem says that if the boundary condition for solving a partial differential
equation is stipulated, the solution is unique. Such a problem is also called a
boundary value problem (BVP). For example, we wish to solve for Φ(r) of
Poisson’s equation with a source term %(r) in a certain volume bounded by a
surface S (see Figure 1).

Figure 1:

The relevant boundary value problem is to solve the generalized Poisson’s
equation,

∇ · ε∇Φ = −%(r) (4.1)

with stipulated boundary condition. The question to ask is if there could be
two different solutions for Φ(r), namely Φ1(r) and Φ2(r) that satisfy the above
equation and the same boundary condition. In other words,

∇ · ε∇Φ1(r) = −%(r) (4.2)

∇ · ε∇Φ2(r) = −%(r) (4.3)

5



If this is really the case, then taking the difference of the above two equations,
we have

∇ · ε∇δΦ(r) = 0 (4.4)

where

δΦ(r) = Φ1(r)− Φ2(r) (4.5)

The above does not imply that δΦ = 0 as yet. Hence, more work is needed!1

Figure 2:

In this proof, we shall allow for the possibility of a not simply connected
surface as shown in Figure 2. The total surface S = S1 ∪ S2 ∪ S3,2 and V is
enclosed by S. To prove the theorem, we multiply (4.4) by δΦ(r) and integrate
over V , or ˆ

V

dV δΦ∇ · ε∇δΦ = 0 (4.6)

We invoke Gauss’s divergence theorem3 that allows us to convert the volume
integral into a surface integral.

To this end, one notices that, by the product rule of derivatives, we have

∇ · (δΦε∇δΦ) = ∇δΦ · ε∇δΦ + δΦ∇ · ε∇δΦ (4.7)

Integrating the above equation, both the left-hand side and right-hand side over
a volume V , Gauss’s divergence theorem allows one to convert the left-hand side
into a surface integral, namelyˆ

S

dSn̂ · (δΦε∇δΦ) =

ˆ
V

dV ε(∇δΦ)2 +

ˆ
V

dV δΦ∇ · ε∇δΦ︸ ︷︷ ︸
=0

(4.8)

1We are in a very similar situation in linear algebra where A · x = 0 does not imply that
x = 0.

2The cup symbol means “union”. It is the mathematically formal way to say “plus”.
3The Gauss’ divergence theorem and Stokes’ theorem have all been related to Green’s

theorem, but Green never wrote them in his original work. They are somewhat related to
integration by parts.
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The last term on the right-hand side is zero by virtue of (4.4) or (4.6). Conse-
quently,

ˆ
S

dSn̂ · (δΦε∇δΦ) =

ˆ
V

dV ε(∇δΦ)2 (4.9)

Therefore, if

(i) δΦ = 0, or n̂ · ∇δΦ = 0 on S, or

(ii) δΦ = 0 on part of S and n̂ · ∇δΦ = 0, on the rest of S,

then, the left-hand side of the above is zero, and we have

ˆ
V

dV ε(∇δΦ)2 = 0 (4.10)

Since (∇δΦ)2 = ∇δΦ ·∇δΦ = |∇δΦ|2 > 0 always if δΦ 6= 0, the above is possible
only if δΦ = 0 (unless δΦ is a constant).

We further elaborate on the boundary conditions. The above is equivalent
to

(i) Φ1 = Φ2 on S, or n̂ · ∇Φ1 = n̂ · ∇Φ2 on S

(ii) Φ1 = Φ2 on part of S, and n̂ · ∇Φ1 = n̂ · ∇Φ2 on the rest of S.

The specification of Φ on S is known as the Dirichlet boundary condition,
while the specification of n̂·∇Φ = ∂

∂nΦ or its normal derivative on S is known as
the Neumann boundary condition. With these boundary conditions and mixture
thereof, there could only be a unique solution to the boundary value problem
related to the generalized Poisson’s equation

∇ · ε∇Φ = −% (4.11)
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